|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
K4T1G084QD K4T1G164QD DDR2 SDRAM 1Gb D-die DDR2 SDRAM Specification www..com 60FBGA & 84FBGA with Pb-Free (RoHS compliant) INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND. 1. For updates or additional information about Samsung products, contact your nearest Samsung office. 2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure couldresult in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. * Samsung Electronics reserves the right to change products or specification without notice. -1 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD DDR2 SDRAM Table of Contents 1.0 Ordering Information ...................................................................................................................2 2.0 Key Features ................................................................................................................................2 3.0 Package Pinout/Mechanical Dimension & Addressing ............................................................3 3.1 x8 package pinout (Top View) : 60ball FBGA Package ......................................................................3 3.2 x16 package pinout (Top View) : 84ball FBGA Package ....................................................................4 3.3 FBGA Package Dimension (x8) ......................................................................................................5 3.4 FBGA Package Dimension (x16) ....................................................................................................6 www..com 4.0 Input/Output Functional Description .........................................................................................7 5.0 DDR2 SDRAM Addressing ..........................................................................................................8 6.0 Absolute Maximum DC Ratings ..................................................................................................9 7.0 AC & DC Operating Conditions .................................................................................................. 9 7.1 Recommended DC Operating Conditions (SSTL - 1.8) ......................................................................9 7.2 Operating Temperature Condition ...............................................................................................10 7.3 Input DC Logic Level ..................................................................................................................10 7.4 Input AC Logic Level ..................................................................................................................10 7.5 AC Input Test Conditions ...........................................................................................................10 7.6 Differential input AC logic Level ..................................................................................................11 7.7 Differential AC output parameters ...............................................................................................11 8.0 ODT DC electrical characteristics ............................................................................................12 9.0 OCD default characteristics ......................................................................................................12 10.0 IDD Specification Parameters and Test Conditions .............................................................13 11.0 DDR2 SDRAM IDD Spec Table ................................................................................................15 12.0 Input/Output capacitance ........................................................................................................16 13.0 Electrical Characteristics & AC Timing for DDR2-800/667/533/400 .....................................16 13.1 Refresh Parameters by Device Density .....................................................................................16 13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ...........................................16 13.3 Timing Parameters by Speed Grade .........................................................................................17 14.0 General notes, which may apply for all AC parameters .......................................................19 15.0 Specific Notes for dedicated AC parameters ........................................................................21 0 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD DDR2 SDRAM Year 2007 - Initial Release History Revision History Revision 1.0 Month March www..com 1 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 1.0 Ordering Information Org. 128Mx8 64Mx16 DDR2-800 5-5-5 DDR2-800 6-6-6 DDR2-667 5-5-5 K4T1G084QD-ZC(L)E6 K4T1G164QD-ZC(L)E6 DDR2-533 4-4-4 DDR2 SDRAM DDR2-400 3-3-3 Package 60 FBGA 84 FBGA K4T1G084QD-ZC(L)E7 K4T1G084QD-ZC(L)F7 K4T1G164QD-ZC(L)E7 K4T1G164QD-ZC(L)F7 K4T1G084QD-ZC(L)D5 K4T1G084QD-ZC(L)CC K4T1G164QD-ZC(L)D5 K4T1G164QD-ZC(L)CC Note : 1. Speed bin is in order of CL-tRCD-tRP. 2. RoHS Compliant. 2.0 Key Features Speed www..com CAS Latency tRCD(min) tRP(min) tRC(min) DDR2-800 5-5-5 5 12.5 12.5 57.5 DDR2-800 6-6-6 6 15 15 60 DDR2-667 5-5-5 5 15 15 60 DDR2-533 4-4-4 4 15 15 60 DDR2-400 3-3-3 3 15 15 55 Units tCK ns ns ns * JEDEC standard 1.8V 0.1V Power Supply * VDDQ = 1.8V 0.1V * 200 MHz fCK for 400Mb/sec/pin, 267MHz fCK for 533Mb/sec/ pin, 333MHz fCK for 667Mb/sec/pin, 400MHz fCK for 800Mb/ sec/pin * 8 Banks * Posted CAS * Programmable CAS Latency: 3, 4, 5, 6 * Programmable Additive Latency: 0, 1, 2, 3, 4, 5 * Write Latency(WL) = Read Latency(RL) -1 * Burst Length: 4 , 8(Interleave/nibble sequential) * Programmable Sequential / Interleave Burst Mode * Bi-directional Differential Data-Strobe (Single-ended datastrobe is an optional feature) * Off-Chip Driver(OCD) Impedance Adjustment * On Die Termination * Special Function Support - PASR(Partial Array Self Refresh) - 50ohm ODT - High Temperature Self-Refresh rate enable * Average Refresh Period 7.8us at lower than TCASE 85C, 3.9us at 85C < TCASE < 95 C * All of Lead-free products are compliant for RoHS Note : This data sheet is an abstract of full DDR2 specification and does not cover the common features which are described in "DDR2 SDRAM Device Operation & Timing Diagram". The 1Gb DDR2 SDRAM is organized as a 16Mbit x 8 I/Os x 8banks or 8Mbit x 16 I/Os x 8 banks device. This synchronous device achieves high speed double-data-rate transfer rates of up to 800Mb/sec/pin (DDR2-800) for general applications. The chip is designed to comply with the following key DDR2 SDRAM features such as posted CAS with additive latency, write latency = read latency - 1, Off-Chip Driver(OCD) impedance adjustment and On Die Termination. All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the crosspoint of differential clocks (CK rising and CK falling). All I/Os are synchronized with a pair of bidirectional strobes (DQS and DQS) in a source synchronous fashion. The address bus is used to convey row, column, and bank address information in a RAS/ CAS multiplexing style. For example, 1Gb(x8) device receive 14/ 10/3 addressing. The 1Gb DDR2 device operates with a single 1.8V 0.1V power supply and 1.8V 0.1V VDDQ. The 1Gb DDR2 device is available in 60ball FBGAs(x8) and in 84ball FBGAs(x16). Note : The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. 2 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 3.0 Package Pinout/Mechanical Dimension & Addressing 3.1 x8 package pinout (Top View) : 60ball FBGA Package 1 VDD DQ6 VDDQ DDR2 SDRAM 2 NU/ RDQS 3 VSS DM/ RDQS 7 A B C D E F G H J K L VSSQ DQS VDDQ DQ2 VSSDL RAS CAS A2 A6 A11 NC 8 DQS VSSQ DQ0 VSSQ CK CK CS A0 A4 A8 A13 9 VDDQ DQ7 VDDQ DQ5 VDD ODT VSSQ DQ1 VSSQ VREF CKE VDDQ DQ3 VSS WE BA1 A1 A5 A9 NC www..com DQ4 VDDL BA2 BA0 A10/AP VDD VSS A3 A7 VSS VDD A12 Note: 1. Pins B3 and A2 have identical capacitance as pins B7 and A8. 2. For a read, when enabled, strobe pair RDQS & RDQS are identical in function and timing to strobe pair DQS & DQS and input masking function is disabled. 3. The function of DM or RDQS/RDQS are enabled by EMRS command. 4. VDDL and VSSDL are power and ground for the DLL. Ball Locations (x8) 1 A B C D E F G H J K L : Populated Ball + : Depopulated Ball Top View (See the balls through the Package) 2 3 4 5 6 7 8 9 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 3 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD DDR2 SDRAM 3.2 x16 package pinout (Top View) : 84ball FBGA Package 1 VDD DQ14 VDDQ DQ12 VDD DQ6 2 NC VSSQ DQ9 VSSQ NC VSSQ DQ1 VSSQ VREF CKE 3 VSS UDM VDDQ DQ11 VSS LDM VDDQ DQ3 VSS WE BA1 A1 A5 A9 NC 7 A B C D E F G H J K L M N P R VSSQ UDQS VDDQ DQ10 VSSQ LDQS VDDQ DQ2 VSSDL RAS CAS A2 A6 A11 NC 8 UDQS VSSQ DQ8 VSSQ LDQS VSSQ DQ0 VSSQ CK CK CS A0 A4 A8 NC 9 VDDQ DQ15 VDDQ DQ13 VDDQ DQ7 VDDQ DQ5 VDD ODT www..com VDDQ DQ4 VDDL BA2 BA0 A10/AP VDD VSS A3 A7 VSS VDD A12 Note : 1. VDDL and VSSDL are power and ground for the DLL. 2. In case of only 8 DQs out of 16 DQs are used, LDQS, LDQSB and DQ0~7 must be used. Ball Locations (x16) : Populated Ball + : Depopulated Ball Top View (See the balls through the Package) 1 A B C D E F G H J K L M N P R 2 3 4 5 6 7 8 9 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD DDR2 SDRAM 3.3 FBGA Package Dimension (x8) MOLDING AREA 9.00 0.10 0.80 x 8 = 6.40 0.80 1.60 B # A1 INDEX MARK A (Datum A) 9 A B C 8 7 6 5 4 3 2 1 www..com (Datum B) E F H J K L (0.95) (1.80) 60-0.450.05 0.2 M AB 0.80 G 11.00 0.10 0.10MAX D 9.00 0.10 #A1 11.00 0.10 8.00 0.350.05 1.100.10 0.500.05 5 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD DDR2 SDRAM 3.4 FBGA Package Dimension (x16) MOLDING AREA 9.00 0.10 6.40 0.80 1.60 B # A1 INDEX MARK A 9 (Datum A) A B C D E F 8 7 6 5 4 3 2 1 www..com (Datum B) K 5.60 L M N P R 3.20 (0.95) (1.80) 84-0.450.05 0.2 M AB 1.60 0.80 J 13.00 0.10 0.10MAX H 9.00 0.10 #A1 13.00 0.10 11.20 G 0.350.05 1.100.10 0.500.05 6 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 4.0 Input/Output Functional Description Symbol CK, CK Type Input Function DDR2 SDRAM Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK (both directions of crossing). Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for power down entry and exit, and for self refresh entry. CKE is asynchronous for self refresh exit. After VREF has become stable during the power on and initialization swquence, it must be maintained for proper operation of the CKE receiver. For proper self-refresh entry and exit, VREF must be maintained to this input. CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during self refresh. Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on systems with multiple Ranks. CS is considered part of the command code. On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR2 SDRAM. When enabled, ODT is only applied to each DQ, DQS, DQS, RDQS, RDQS, and DM signal for x4/x8 configurations. For x16 configuration ODT is applied to each DQ, UDQS/UDQS, LDQS/LDQS, UDM, and LDM signal. The ODT pin will be ignored if the Extended Mode Register (EMRS(1)) is programmed to disable ODT. Command Inputs: RAS, CAS and WE (along with CS) define the command being entered. Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS loading. For x8 device, the function of DM or RDQS/RDQS is enabled by EMRS command. Bank Address Inputs: BA0, BA1 and BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines if the mode register or extended mode register is to be accessed during a MRS or EMRS cycle. Address Inputs: Provided the row address for Active commands and the column address and Auto Precharge bit for Read/Write commands to select one location out of the memory array in the respective bank. A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by BA0, BA1. The address inputs also provide the op-code during Mode Register Set commands. CKE Input www..com CS Input ODT Input RAS, CAS, WE Input DM Input BA0 - BA2 Input A0 - A13 Input DQ Input/OutData Input/ Output: Bi-directional data bus. put Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, LDQS corresponds to the data on DQ0-DQ7; UDQS corresponds to the data on DQ8-DQ15. For the x8, an RDQS option using DM pin can be enabled via the EMRS(1) to simplify read timing. The data strobes DQS, LDQS, UDQS, and RDQS may be used in single ended mode or paired with optional complementary signals DQS, LDQS, UDQS, and RDQS to provide differential pair signaling to the system during both reads and writes. An EMRS(1) control bit enables or disables all complementary data strobe signals. In this data sheet, "differential DQS signals" refers to any of the following with A10 = 0 of EMRS(1) x4 DQS/DQS Input/Output x8 DQS/DQS if EMRS(1)[A11] = 0 x8 DQS/DQS, RDQS/RDQS, if EMRS(1)[A11] = 1 x16 LDQS/LDQS and UDQS/UDQS "single-ended DQS signals" refers to any of the following with A10 = 1 of EMRS(1) x4 DQS x8 DQS if EMRS(1)[A11] = 0 x8 DQS, RDQS, if EMRS(1)[A11] = 1 x16 LDQS and UDQS No Connect: No internal electrical connection is present. Supply Supply Supply Supply Supply Power Supply: 1.8V +/- 0.1V, DQ Power Supply: 1.8V +/- 0.1V Ground, DQ Ground DLL Power Supply: 1.8V +/- 0.1V DLL Ground Reference voltage DQS, (DQS) (LDQS), (LDQS) (UDQS), (UDQS) (RDQS), (RDQS) NC VDD/VDDQ VSS/VSSQ VDDL VSSDL VREF 7 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 5.0 DDR2 SDRAM Addressing 1Gb Addressing Configuration # of Bank Bank Address Auto precharge Row Address Column Address 256Mb x4 8 BA0 ~ BA2 A10/AP A0 ~ A13 A0 ~ A9,A11 128Mb x 8 8 BA0 ~ BA2 A10/AP A0 ~ A13 A0 ~ A9 DDR2 SDRAM 64Mb x16 8 BA0 ~ BA2 A10/AP A0 ~ A12 A0 ~ A9 * Reference information: The following tables are address mapping information for other densities. 256Mb Configuration www..com # of Bank Bank Address Auto precharge Row Address Column Address 64Mb x4 4 BA0,BA1 32Mb x 8 4 BA0,BA1 16Mb x16 4 BA0,BA1 A10/AP A0 ~ A12 A0 ~ A9,A11 A10/AP A0 ~ A12 A0 ~ A9 A10/AP A0 ~ A12 A0 ~ A8 512Mb Configuration # of Bank Bank Address Auto precharge Row Address Column Address 128Mb x4 4 BA0,BA1 A10/AP A0 ~ A13 A0 ~ A9,A11 64Mb x 8 4 BA0,BA1 A10/AP A0 ~ A13 A0 ~ A9 32Mb x16 4 BA0,BA1 A10/AP A0 ~ A12 A0 ~ A9 2Gb Configuration # of Bank Bank Address Auto precharge Row Address Column Address 512Mb x4 8 BA0 ~ BA2 A10/AP A0 ~ A14 A0 ~ A9,A11 256Mb x 8 8 BA0 ~ BA2 A10/AP A0 ~ A14 A0 ~ A9 128Mb x16 8 BA0 ~ BA2 A10/AP A0 ~ A13 A0 ~ A9 4Gb Configuration # of Bank Bank Address Auto precharge Row Address Column Address/page size 1 Gb x4 8 BA0 ~ BA2 A10/AP A0 - A15 A0 - A9,A11 512Mb x 8 8 BA0 ~ BA2 A10/AP A0 - A15 A0 - A9 256Mb x16 8 BA0 ~ BA2 A10/AP A0 - A14 A0 - A9 8 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 6.0 Absolute Maximum DC Ratings Symbol VDD VDDQ VDDL VIN, VOUT TSTG Parameter Voltage on VDD pin relative to VSS Voltage on VDDQ pin relative to VSS Voltage on VDDL pin relative to VSS Voltage on any pin relative to VSS Storage Temperature Rating - 1.0 V ~ 2.3 V - 0.5 V ~ 2.3 V - 0.5 V ~ 2.3 V - 0.5 V ~ 2.3 V -55 to +100 DDR2 SDRAM Units V V V V C Notes 1 1 1 1 1, 2 Note : 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 www..com standard. 7.0 AC & DC Operating Conditions 7.1 Recommended DC Operating Conditions (SSTL - 1.8) Symbol VDD VDDL VDDQ VREF VTT Supply Voltage Supply Voltage for DLL Supply Voltage for Output Input Reference Voltage Termination Voltage Parameter Rating Min. 1.7 1.7 1.7 0.49*VDDQ VREF-0.04 Typ. 1.8 1.8 1.8 0.50*VDDQ VREF Max. 1.9 1.9 1.9 0.51*VDDQ VREF+0.04 Units V V V mV V 4 4 1,2 3 Notes Note : There is no specific device VDD supply voltage requirement for SSTL-1.8 compliance. However under all conditions VDDQ must be less than or equal to VDD. 1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5 x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ. 2. Peak to peak AC noise on VREF may not exceed +/-2% VREF(DC). 3. VTT of transmitting device must track VREF of receiving device. 4. AC parameters are measured with VDD, VDDQ and VDDL tied together. 9 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 7.2 Operating Temperature Condition Symbol TOPER Parameter Operating Temperature Rating 0 to 95 Units C DDR2 SDRAM Notes 1, 2 1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51.2 standard. 2. At 85 - 95 C operation temperature range, doubling refresh commands in frequency to a 32ms period ( tREFI=3.9 us ) is required, and to enter to self refresh mode at this temperature range, an EMRS command is required to change internal refresh rate. 7.3 Input DC Logic Level Symbol VIH(DC) www..com VIL(DC) Parameter DC input logic high DC input logic low Min. VREF + 0.125 - 0.3 Max. VDDQ + 0.3 VREF - 0.125 Units V V Notes 7.4 Input AC Logic Level Symbol VIH (AC) VIL (AC) Parameter AC input logic high AC input logic low DDR2-400, DDR2-533 Min. VREF + 0.250 Max. VREF - 0.250 DDR2-667, DDR2-800 Min. VREF + 0.200 VREF - 0.200 Max. Units V V 7.5 AC Input Test Conditions Symbol VREF VSWING(MAX) SLEW Condition Input reference voltage Input signal maximum peak to peak swing Input signal minimum slew rate Value 0.5 * VDDQ 1.0 1.0 Units V V V/ns Notes 1 1 2, 3 Note : 1. Input waveform timing is referenced to the input signal crossing through the VIH/IL(AC) level applied to the device under test. 2. The input signal minimum slew rate is to be maintained over the range from VREF to VIH(AC) min for rising edges and the range from VREF to VIL(AC) max for falling edges as shown in the below figure. 3. AC timings are referenced with input waveforms switching from VIL(AC) to VIH(AC) on the positive transitions and VIH(AC) to VIL(AC) on the negative transitions. VDDQ VIH(AC) min VSWING(MAX) VIH(DC) min VREF VIL(DC) max VIL(AC) max delta TF Falling Slew = VREF - VIL(AC) max delta TF delta TR Rising Slew = VSS VIH(AC) min - VREF delta TR < AC Input Test Signal Waveform > 10 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 7.6 Differential input AC logic Level Symbol VID(AC) VIX(AC) Note : Parameter AC differential input voltage AC differential cross point voltage Min. 0.5 0.5 * VDDQ - 0.175 Max. VDDQ + 0.6 DDR2 SDRAM Units V V Notes 1 2 0.5 * VDDQ + 0.175 1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input signal (such as CK, DQS, LDQS or UDQS) and VCP is the complementary input signal (such as CK, DQS, LDQS or UDQS). The minimum value is equal to V IH (AC) - V IL(AC). 2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is expected to track variations in VDDQ . VIX(AC) indicates the voltage at which differential input signals must cross. www..com VDDQ VTR VCP VSSQ < Differential signal levels > VID Crossing point VIX or VOX 7.7 Differential AC output parameters Symbol VOX(AC) Parameter AC differential cross point voltage Min. 0.5 * VDDQ - 0.125 Max. 0.5 * VDDQ + 0.125 Units V Note 1 Note : 1. The typical value of VOX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VOX(AC) is expected to track variations in VDDQ . VOX(AC) indicates the voltage at which differential output signals must cross. 8.0 ODT DC electrical characteristics PARAMETER/CONDITION Rtt effective impedance value for EMRS(A6,A2)=0,1; 75 ohm Rtt effective impedance value for EMRS(A6,A2)=1,0; 150 ohm Rtt effective impedance value for EMRS(A6,A2)=1,1; 50 ohm Deviation of VM with respect to VDDQ/2 Note1: Test condition for Rtt measurements Measurement Definition for Rtt(eff): Apply VIH (ac) and VIL (ac) to test pin separately, then measure current I(VIH (ac)) and I( VIL (ac)) respectively. VIH (ac), VIL (ac), and VDDQ values defined in SSTL_18 VIH (ac) - VIL (ac) SYMBOL Rtt1(eff) Rtt2(eff) Rtt3(eff) delta VM MIN 60 120 40 -6 NOM 75 150 50 MAX 90 180 60 +6 UNITS ohm ohm ohm % NOTES 1 1 1 1 Rtt(eff) = I(VIH (ac)) - I(VIL (ac)) delta VM = 2 x Vm VDDQ -1 x 100% Measurement Definition for VM: Measure voltage (VM) at test pin (midpoint) with no load. 11 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 9.0 OCD default characteristics Description Output impedance Output impedance step size for OCD calibration Pull-up and pull-down mismatch Output slew rate Sout Parameter Min Nom Max DDR2 SDRAM Unit ohms ohms ohms V/ns Notes 1,2 6 1,2,3 1,4,5,6,7,8 Normal 18ohms See full strength default driver characteristics 0 0 1.5 1.5 4 5 Note : 1. Absolute Specifications (0C TCASE +95C; VDD = +1.8V 0.1V, VDDQ = +1.8V 0.1V) 2. Impedance measurement condition for output source dc current: VDDQ = 1.7V; VOUT = 1420mV; (VOUT-VDDQ)/Ioh must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ- 280mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7V; VOUT = 280mV; VOUT/Iol must be less than 23.4 ohms for values of VOUT between 0V and 280mV. www..com 3. Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage. 4. Slew rate measured from VIL(AC) to VIH(AC). 5. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This is guaranteed by design and characterization. 6. This represents the step size when the OCD is near 18 ohms at nominal conditions across all process and represents only the DRAM uncertainty. Output slew rate load : VTT 25 ohms Output (VOUT) Reference Point 7. DRAM output slew rate specification applies to 400Mb/sec/pin, 533Mb/sec/pin, 667Mb/sec/pin and 800Mb/sec/pin speed bins. 8. Timing skew due to DRAM output slew rate mis-match between DQS / DQS and associated DQs is included in tDQSQ and tQHS specification. 12 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 10.0 IDD Specification Parameters and Test Conditions (IDD values are for full operating range of Voltage and Temperature, Notes 1 - 5) Symbol IDD0 Proposed Conditions DDR2 SDRAM Units mA Notes Operating one bank active-precharge current; tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRASmin(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING Operating one bank active-read-precharge current; IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRC = tRC (IDD), tRAS = tRASmin(IDD), tRCD = tRCD(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address businputs are SWITCHING; Data pattern is same as IDD4W IDD1 mA Precharge power-down current; All banks idle; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING www..com Precharge quiet standby current; IDD2Q All banks idle; tCK = tCK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputsare STABLE; Data bus inputs are FLOATING IDD2P IDD2N Precharge standby current; All banks idle; tCK = tCK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING Active power-down current; Fast PDN Exit MRS(12) = 0mA All banks open; tCK = tCK(IDD); CKE is LOW; Other control and address bus Slow PDN Exit MRS(12) = 1mA inputs are STABLE; Data bus inputs are FLOATING Active standby current; All banks open; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING Operating burst write current; All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING Operating burst read current; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W Burst auto refresh current; tCK = tCK(IDD); Refresh command at every tRFC(IDD) interval; CKE is HIGH, CS\ is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING Self refresh current; CK and CK\ at 0V; CKE 0.2V; Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING Normal Low Power mA mA mA mA mA mA IDD3P IDD3N IDD4W mA IDD4R mA IDD5B mA mA mA IDD6 IDD7 Operating bank interleave read current; All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD)-1*tCK(IDD); tCK = tCK(IDD), tRC = tRC(IDD), tRRD = tRRD(IDD), tFAW = tFAW(IDD), tRCD = 1*tCK(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R; Refer to the following page for detailed timing conditions mA 13 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD DDR2 SDRAM Note : 1. IDD specifications are tested after the device is properly initialized 2. Input slew rate is specified by AC Parametric Test Condition 3. IDD parameters are specified with ODT disabled. 4. Data bus consists of DQ, DM, DQS, DQS\, RDQS, RDQS\, LDQS, LDQS\, UDQS, and UDQS\. IDD values must be met with all combinations of EMRS bits 10 and 11. 5. Definitions for IDD LOW is defined as Vin VILAC(max) HIGH is defined as Vin VIHAC(min) STABLE is defined as inputs stable at a HIGH or LOW level FLOATING is defined as inputs at VREF = VDDQ/2 SWITCHING is defined as: inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including masks or strobes. www..com For purposes of IDD testing, the following parameters are utilized DDR2-800 Parameter CL(IDD) tRCD(IDD) tRC(IDD) tRRD(IDD)-x4/x8 tRRD(IDD)-x16 tCK(IDD) tRASmin(IDD) tRP(IDD) tRFC(IDD) 5-5-5 5 12.5 57.5 7.5 10 2.5 45 12.5 127.5 DDR2-800 6-6-6 6 15 60 7.5 10 2.5 45 15 127.5 DDR2-667 5-5-5 5 15 60 7.5 10 3 45 15 127.5 DDR2-533 4-4-4 4 15 60 7.5 10 3.75 45 15 127.5 DDR2-400 3-3-3 3 15 55 7.5 10 5 40 15 127.5 Units tCK ns ns ns ns ns ns ns ns Detailed IDD7 The detailed timings are shown below for IDD7. Legend: A = Active; RA = Read with Autoprecharge; D = Deselect IDD7: Operating Current: All Bank Interleave Read operation All banks are being interleaved at minimum tRC(IDD) without violating tRRD(IDD) and tFAW(IDD) using a burst length of 4. Control and address bus inputs are STABLE during DESELECTs. IOUT = 0mA Timing Patterns for 8bank devices x4/ x8 -DDR2-400 3/3/3 : A0 RA0 A1 RA1 A2 RA2 A3 RA3 A4 RA4 A5 RA5 A6 RA6 A7 RA7 -DDR2-533 4/4/4 : A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D -DDR2-667 5/5/5 : A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D -DDR2-800 6/6/6 : A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D -DDR2-800 5/5/5 : A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D Timing Patterns for 8bank devices x16 -DDR2-400 3/3/3 : A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D -DDR2-533 4/4/4 : A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D -DDR2-667 5/5/5 : A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D -DDR2-800 6/6/6 : A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D -DDR2-800 5/5/5 : A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D 14 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 11.0 DDR2 SDRAM IDD Spec Table 128Mx8 (K4T1G084QD) Symbol IDD0 IDD1 IDD2P IDD2Q IDD2N IDD3P-F IDD3P-S www..com IDD3N IDD4W IDD4R IDD5 IDD6 IDD7 15 265 15 40 50 40 18 65 145 155 155 6 15 260 800@CL=5 CE7 90 100 8 15 40 50 40 18 65 145 155 155 6 15 240 LE7 800@CL=6 CF7 90 100 8 15 40 45 40 18 60 130 140 150 6 15 240 LF7 667@CL=5 CE6 85 95 8 15 40 45 35 18 60 120 130 150 6 15 225 LE6 533@CL=4 CD5 80 90 8 15 35 40 35 18 55 105 115 145 6 LD5 400@CL=3 CCC 75 85 8 LCC DDR2 SDRAM (TA=0oC, VDD= 1.9V) Unit mA mA mA mA mA mA mA mA mA mA mA mA mA Notes (TA=0oC, VDD= 1.9V) 64Mx16 (K4T1G164QD) Symbol IDD0 IDD1 IDD2P IDD2Q IDD2N IDD3P-F IDD3P-S IDD3N IDD4W IDD4R IDD5 IDD6 IDD7 15 280 15 40 50 40 18 65 175 195 155 6 15 280 800@CL=5 CE7 100 110 8 15 40 50 40 18 65 175 195 155 6 15 255 LE7 800@CL=6 CF7 100 110 8 15 40 45 40 18 60 150 175 150 6 15 245 LF7 667@CL=5 CE6 95 105 8 15 40 45 35 18 60 130 150 150 6 15 245 LE6 533@CL=4 CD5 90 100 8 15 35 40 35 18 55 120 135 145 6 LD5 400@CL=3 CCC 90 100 8 LCC mA mA mA mA mA mA mA mA mA mA mA mA mA Unit Notes 15 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 12.0 Input/Output capacitance Parameter Input capacitance, CK and CK Input capacitance delta, CK and CK Input capacitance, all other input-only pins Input capacitance delta, all other input-only pins Input/output capacitance, DQ, DM, DQS, DQS Input/output capacitance delta, DQ, DM, DQS, DQS Symbol CCK CDCK CI CDI CIO CDIO DDR2-400 DDR2-533 Min 1.0 x 1.0 x 2.5 x Max 2.0 0.25 2.0 0.25 4.0 0.5 DDR2-667 Min 1.0 x 1.0 x 2.5 x Max 2.0 0.25 2.0 0.25 3.5 0.5 DDR2 SDRAM DDR2-800 Min 1.0 x 1.0 x 2.5 x Max 2.0 0.25 1.75 0.25 3.5 0.5 pF pF pF pF pF pF Units www..com 13.0 Electrical Characteristics & AC Timing for DDR2-800/667/533/400 (0 C < TOPER < 95 C; VDDQ = 1.8V + 0.1V; VDD = 1.8V + 0.1V) 13.1 Refresh Parameters by Device Density Parameter Refresh to active/Refresh command time Average periodic refresh interval tRFC tREFI 0 C TCASE 85C 85 C < TCASE 95C Symbol 256Mb 75 7.8 3.9 512Mb 105 7.8 3.9 1Gb 127.5 7.8 3.9 2Gb 195 7.8 3.9 4Gb 327.5 7.8 3.9 Units ns s s 13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin Speed Bin (CL - tRCD - tRP) Parameter tCK, CL=3 tCK, CL=4 tCK, CL=5 tCK, CL=6 tRCD tRP tRC tRAS min 5 3.75 2.5 12.5 12.5 57.5 45 DDR2-800(E7) 5-5-5 max 8 8 8 70000 min 3.75 3 2.5 15 15 60 45 DDR2-800(F7) 6-6-6 max 8 8 8 70000 5 3.75 3 15 15 60 45 DDR2-667(E6) 5-5-5 min max 8 8 8 70000 5 3.75 3.75 15 15 60 45 DDR2-533(D5) 4-4-4 min max 8 8 8 70000 5 5 15 15 55 40 DDR2-400(CC) 3-3-3 min max 8 8 70000 ns ns ns ns ns ns ns ns Units 16 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 13.3 Timing Parameters by Speed Grade (Refer to notes for informations related to this table at the bottom) Parameter DQ output access time from CK/CK DQS output access time from CK/CK CK high-level width CK low-level width CK half period Clock cycle time, CL=x DQ and DM input hold time Symbol tAC tDQSCK tCH tCL tHP tCK tDH(base) tDS(base) DDR2-800 min - 400 - 350 0.45 0.45 min(tCL,t CH) 2500 125 50 0.6 0.35 x tAC min 2* tAC min x x tHP tQHS - 0.25 0.35 0.35 0.2 0.2 2 0.4 0.35 250 175 0.9 0.4 7.5 10 35 45 2 15 WR+tRP 7.5 7.5 tRFC + 10 200 2 2 8 - AL x x x x x x max 400 350 0.55 0.55 x 8000 x x x x tAC max tAC max tAC max 200 300 x 0.25 x x x x x 0.6 x x x 1.1 0.6 x x DDR2-667 min -450 -400 0.45 0.45 min(tCL, tCH) 3000 175 100 0.6 0.35 x tAC min 2*tAC min x x tHP tQHS -0.25 0.35 0.35 0.2 0.2 2 0.4 0.35 275 200 0.9 0.4 7.5 10 37.5 50 2 15 WR+tRP 7.5 7.5 tRFC + 10 200 2 2 7 - AL x x x x x max +450 +400 0.55 0.55 x 8000 x x x x tAC max tAC max DDR2-533 min -500 -450 0.45 0.45 min(tCL, tCH) 3750 225 100 0.6 0.35 x tAC min max +500 +450 0.55 0.55 x 8000 x x x x tAC max tAC max DDR2 SDRAM DDR2-400 min -600 -500 0.45 0.45 min(tCL, tCH) 5000 275 150 0.6 0.35 x tAC min max +600 +500 0.55 0.55 x 8000 x x x x tAC max tAC max tAC max 350 450 x 0.25 x x x x x 0.6 x x x 1.1 0.6 x x Units ps ps tCK tCK ps ps ps ps tCK tCK ps ps ps ps ps ps tCK tCK tCK tCK tCK tCK tCK tCK ps ps tCK tCK ns ns ns ns tCK Notes 20,21 24 15,16, 17,20 15,16, 17,21 www..com DQ and DM input setup time Control & Address input pulse width for each input tIPW DQ and DM input pulse width for each input Data-out high-impedance time from CK/CK DQS low-impedance time from CK/CK DQ low-impedance time from CK/CK tDIPW tHZ tLZ(DQS) tLZ(DQ) 27 27 22 21 tAC max 2* tACmin tAC max 2* tACmin 240 340 x 0.25 x x x x x 0.6 x x x 1.1 0.6 x x x x tHP tQHS -0.25 0.35 0.35 0.2 0.2 2 0.4 0.35 375 250 0.9 0.4 7.5 10 37.5 50 2 15 WR+tRP 7.5 7.5 tRFC + 10 200 2 2 6 - AL x x x x x 300 400 x 0.25 x x x x x 0.6 x x x 1.1 0.6 x x x x tHP tQHS -0.25 0.35 0.35 0.2 0.2 2 0.4 0.35 475 350 0.9 0.4 7.5 10 37.5 50 2 15 WR+tRP 10 7.5 tRFC + 10 200 2 2 6 - AL DQS-DQ skew for DQS and associated DQ sigtDQSQ nals DQ hold skew factor DQ/DQS output hold time from DQS tQHS tQH First DQS latching transition to associated clock tDQSS edge DQS input high pulse width DQS input low pulse width DQS falling edge to CK setup time DQS falling edge hold time from CK Mode register set command cycle time Write postamble Write preamble Address and control input hold time Address and control input setup time Read preamble Read postamble tDQSH tDQSL tDSS tDSH tMRD tWPST tWPRE tIH(base) tIS(base) tRPRE tRPST 19 14,16, 18,23 14,16, 18,22 28 28 12 12 Active to active command period for 1KB page tRRD size products Active to active command period for 2KB page tRRD size products Four Activate Window for 1KB page size products tFAW Four Activate Window for 2KB page size products tFAW CAS to CAS command delay Write recovery time Auto precharge write recovery + precharge time Internal write to read command delay Internal read to precharge command delay Exit self refresh to a non-read command Exit self refresh to a read command tCCD tWR tDAL tWTR tRTP tXSNR tXSRD x x x ns tCK ns ns ns tCK 23 33 11 Exit precharge power down to any non-read comtXP mand Exit active power down to read command Exit active power down to read command (slow exit, lower power) tXARD tXARDS x x tCK tCK tCK 9 9, 10 17 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD DDR2 SDRAM DDR2-800 min 3 2 tAC(min) 2 tAC(max) + 0.7 max DDR2-667 min 3 2 tAC(min) 2 tAC(max) +0.7 max DDR2-533 min 3 2 tAC(min) 2 max DDR2-400 min 3 2 2 tAC(max) +1 max Parameter CKE minimum pulse width (high and low pulse width) ODT turn-on delay ODT turn-on ODT turn-on(Power-Down mode) ODT turn-off delay ODT turn-off t Symbol CKE Units tCK tCK ns ns tCK ns ns tCK tCK Notes 36 tAOND t AON tAC(max) tAC(min) +1 13, 25 tAONPD tAOFD t 2tCK + 2tCK+tA tAC(min)+ tAC(min)+ 2tCK+tAC tAC(min)+ tAC(min)+ 2tCK+tAC tAC(max) C(max)+ 2 2 (max)+1 2 2 (max)+1 +1 1 2.5 tAC(min) 2.5 tAC(max) + 0.6 2.5 tAC(min) 2.5 tAC(max) + 0.6 2.5 tAC(min) 2.5 tAC(max) + 0.6 2.5 tAC(min) 2.5 tAC(max) + 0.6 AOF 26 www..com ODT turn-off (Power-Down mode) ODT to power down entry latency ODT power down exit latency OCD drive mode output delay tAOFPD 2.5tCK + 2.5tCK+t 2.5tCK+ 2.5tCK+ tAC(min)+ tAC(min)+ tAC(min)+ tAC(min)+ tAC(max) AC(max) tAC(max) tAC(max) 2 2 2 2 +1 +1 +1 +1 3 8 0 tIS+tCK +tIH 12 3 8 0 tIS+tCK +tIH 12 3 8 0 tIS+tCK +tIH 12 3 8 0 tIS+tCK +tIH 12 tANPD tAXPD tOIT ns ns 24 Minimum time clocks remains ON after CKE asyntDelay chronously drops LOW 18 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 14.0 General notes, which may apply for all AC parameters DDR2 SDRAM 1. Slew Rate Measurement Levels a. Output slew rate for falling and rising edges is measured between VTT - 250 mV and VTT + 250 mV for single ended signals. For differential signals (e.g. DQS - DQS) output slew rate is measured between DQS - DQS = -500 mV and DQS - DQS = +500mV. Output slew rate is guaranteed by design, but is not necessarily tested on each device. b. Input slew rate for single ended signals is measured from dc-level to ac-level: from VIL(dc) to VIH(ac) for rising edges and from VIH(dc) and VIL(ac) for falling edges. For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - CK = -250 mV to CK - CK = +500 mV (250mV to -500 mV for falling edges). c. VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or between DQS and DQS for differential strobe. 2. DDR2 SDRAM AC timing reference load Following figure represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise representation of the typical system environment or a depiction of the actual load presented by a production tester. System designers will use IBIS or www..com tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions other simulation (generally a coaxial transmission line terminated at the tester electronics). VDDQ DQ DQS DQS RDQS RDQS DUT Output Timing reference point 25 VTT = VDDQ/2 The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output timing reference voltage level for differential signals is the crosspoint of the true (e.g. DQS) and the complement (e.g. DQS) signal. 3. DDR2 SDRAM output slew rate test load Output slew rate is characterized under the test conditions as shown in the following figure. VDDQ DUT DQ DQS, DQS RDQS, RDQS Output Test point 25W VTT = VDDQ/2 19 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD DDR2 SDRAM 4. Differential data strobe DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the setting of the EMRS "Enable DQS" mode bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timings are measured is mode dependent. In single ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF. In differential mode, these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is guaranteed by design and characterization. Note that when differential data strobe mode is disabled via the EMRS, the complementary pin, DQS, must be tied externally to VSS through a 20 ohm to 10 K ohm resisor to insure proper operation. tDQSH tDQSL DQS/ DQS DQS DQS tWPRE VIH(ac) tWPST VIH(dc) DQ D VIL(ac) D D VIL(dc) D tDH VIH(dc) www..com DM tDS DMin VIH(ac) tDS DMin tDH DMin DMin VIL(dc) VIL(ac) tCH CK tCL CK/CK CK DQS DQS/DQS DQS tRPRE tRPST Q tDQSQmax tQH Q Q tDQSQmax tQH Q DQ 5. AC timings are for linear signal transitions. 6. These parameters guarantee device behavior, but they are not necessarily tested on each device. They may be guaranteed by device design or tester correlation. 7. All voltages are referenced to VSS. 8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified. 20 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 15.0 Specific Notes for dedicated AC parameters DDR2 SDRAM 9. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be used for fast active power down exit timing. tXARDS is expected to be used for slow active power down exit timing. 10. AL = Additive Latency 11. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and tRAS(min) have been satisfied. 12. For DDR2-533/400, A minimum of two clocks (2*tCK) is required irrespective of operating frequency. For DDR2-800/667, tnPARAM=RU{tPARAM / tCK(avg)}, which is in clock cycles, assuming all input clock jitter specification are satisfied. 13. Timings are guaranteed with command/address input slew rate of 1.0 V/ns. 14. These parameters guarantee device behavior, but they are not necessarily tested on each device. They may be guaranteed by device design or tester correlation. 15. Timings are guaranteed with data, mask, and (DQS/RDQS in singled ended mode) input slew rate of 1.0 V/ns. 16. Timings are guaranteed with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS signals with a differential slew rate of 2.0 V/ns in differential strobe mode and a slew rate of 1V/ns in single ended mode. www..com 17. tDS and tDH derating Values tDS, tDH Derating Values of DDR2-400, DDR2-533 (ALL units in `ps', Note 1 applies to entire Table) DQS,DQS Differential Slew Rate 4.0 V/ns tDS 2.0 1.5 1.0 DQ Siew rate V/ns 0.9 0.8 0.7 0.6 0.5 0.4 125 83 0 tDH 45 21 0 3.0 V/ns tDS 125 83 0 -11 tDH 45 21 0 -14 2.0 V/ns tDS 125 83 0 -11 -25 tDH 45 21 0 -14 -31 1.8 V/ns tDS 95 12 1 -13 -31 tDH 33 12 -2 -19 -42 1.6 V/ns tDS 24 13 -1 -19 -43 tDH 24 10 -7 -30 -59 1.4V/ns tDS 25 11 -7 -31 -74 tDH 22 5 -18 -47 -89 1.2V/ns tDS 23 5 -19 -62 -127 tDH 17 -6 -35 -77 -140 1.0V/ns tDS 17 -7 -50 -115 tDH 6 -23 -65 -128 0.8V/ns tDS 5 -38 -103 tDH -11 -53 -116 tDS, tDH Derating Values for DDR2-667, DDR2-800 (ALL units in `ps', Note 1 applies to entire Table) DQS,DQS Differential Slew Rate 4.0 V/ns tDS 2.0 1.5 1.0 DQ Slew rate V/ns 0.9 0.8 0.7 0.6 0.5 0.4 100 67 0 tDH 45 21 0 3.0 V/ns tDS 100 67 0 -5 tDH 45 21 0 -14 2.0 V/ns tDS 100 67 0 -5 -13 tDH 45 21 0 -14 -31 1.8 V/ns tDS 79 12 7 -1 -10 tDH 33 12 -2 -19 -42 1.6 V/ns tDS 24 19 11 2 -10 tDH 24 10 -7 -30 -59 1.4V/ns tDS 31 23 14 2 -24 tDH 22 5 -18 -47 -89 1.2V/ns tDS 35 26 14 -12 -52 tDH 17 -6 -35 -77 -140 1.0V/ns tDS 38 26 0 -40 tDH 6 -23 -65 -128 0.8V/ns tDS 38 12 -28 tDH -11 -53 -116 For all input signals the total tDS (setup time) and tDH(hold time) required is calculated by adding the datasheet tDS(base) and tDH(base) value to the delta tDS and delta tDH derating value respectively. Example: tDS(total setup time)= tDS(base) + delta tDS. 21 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD DDR2 SDRAM tDS1, tDH1 Derating Values for DDR2-400, DDR2-533(All units in `ps'; the note applies to the entire table) DQS Single-ended Slew Rate 2.0 V/ns tDS 1 2.0 1.5 1.0 DQ Slew rate V/ns www.Data 0.9 0.8 188 146 63 tDH 1 188 167 125 1.5 V/ns tDS 1 167 125 42 31 tDH 1 146 125 83 69 1.0 V/ns tDS 1 125 83 0 -11 -25 tDH 1 63 42 0 -14 -31 0.9 V/ns tDS 1 81 -2 -13 -27 -45 tDH 1 43 1 -13 -30 -53 0.8 V/ns tDS 1 -7 -18 -32 -50 -74 tDH 1 -13 -27 -44 -67 -96 0.7 V/ns tDS 1 -29 -43 -61 -85 -128 tDH 1 -45 -62 -85 -114 -156 0.6 V/ns tDS 1 -60 -78 -102 -145 -210 tDH 1 -86 -109 -138 -180 -243 0.5 V/ns tDS 1 -108 -138 -175 -240 tDH 1 -152 -181 -223 -286 0.4 V/ns tDS 1 -183 -226 -291 tDH 1 -246 -288 -351 0.7 Sheet4U.com 0.6 0.5 0.4 - For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value to the tDS and tDH derating value respectively. Example: tDS (total setup time) = tDS(base) + tDS. 22 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD 18. tIS and tIH (input setup and hold) derating. tIS, tIH Derating Values for DDR2-400, DDR2-533 CK, CK Differential Slew Rate 2.0 V/ns tIS 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.25 0.2 0.15 +187 +179 +167 +150 +125 +83 0 -11 -25 -43 -67 -110 -175 -285 -350 -525 -800 tIH +94 +89 +83 +75 +45 +21 0 -14 -31 -54 -83 -125 -188 -292 -375 -500 -708 tIS +217 +209 +197 +180 +155 +113 +30 +19 +5 -13 -37 -80 -145 -255 -320 -495 -770 1.5 V/ns tIH +124 +119 +113 +105 +75 +51 +30 +16 -1 -24 -53 -95 -158 -262 -345 -470 -678 tIS +247 +239 +227 +210 +185 +143 +60 +49 +35 +17 -7 -50 -115 -225 -290 -465 -740 1.0 V/ns tIH +154 +149 +143 +135 +105 +81 +60 +46 +29 +6 -23 -65 -128 -232 -315 -440 -648 DDR2 SDRAM Units ps ps ps ps ps ps ps ps ps ps ps ps ps ps ps ps ps Notes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 www..com Command/ Address Slew rate(V/ns) tIS and tIH Derating Values for DDR2-667, DDR2-800 CK, CK Differential Slew Rate 2.0 V/ns tIS 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.9 Command/ Address Slew rate(V/ns) 0.8 0.7 0.6 0.5 0.4 0.3 0.25 0.2 0.15 0.1 +150 +143 +133 +120 +100 +67 0 -5 -13 -22 -34 -60 -100 -168 -200 -325 -517 -1000 tIH +94 +89 +83 +75 +45 +21 0 -14 -31 -54 -83 -125 -188 -292 -375 -500 -708 -1125 tIS +180 +173 +163 +150 +130 +97 +30 +25 +17 +8 -4 -30 -70 -138 -170 -295 -487 -970 1.5 V/ns tIH +124 +119 +113 +105 +75 +51 +30 +16 -1 -24 -53 -95 -158 -262 -345 -470 -678 -1095 tIS +210 +203 +193 +180 +160 +127 +60 +55 +47 +38 +26 0 -40 -108 -140 -265 -457 -940 1.0 V/ns tIH +154 +149 +143 +135 +105 +81 +60 +46 +29 +6 -23 -65 -128 -232 -315 -440 -648 -1065 Units ps ps ps ps ps ps ps ps ps ps ps ps ps ps ps ps ps ps Notes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 For all input signals the total tIS (setup time) and tIH(hold time) required is calculated by adding the datasheet tIS(base) and tIH(base) value to the delta tIS and delta tIH derating value respectively. Example: tIS(total setup time)= tIS(base) + delta tIS. 23 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD DDR2 SDRAM 19. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance (bus turnaround) will degrade accordingly. 20. MIN ( tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). For example, tCL and tCH are = 50% of the period, less the half period jitter ( tJIT(HP)) of the clock source, and less the half period jitter due to crosstalk ( tJIT(crosstalk)) into the clock traces. 21. tQH = tHP - tQHS, where: tHP = minimum half clock period for any given cycle and is defined by clock high or clock low ( tCH, tCL). tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are, separately, due to data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers. 22. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate www..com mismatch between DQS / DQS and associated DQ in any given cycle. 23. tDAL = WR + RU{tRP(ns)/tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For DDR533 at tCK = 3.75ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks. 24. The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock frequency change during precharge power-down, a specific procedure is required as described in DDR2 device operation 25. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND. 26. ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. 27. tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ). Following figure shows a method to calculate the point when device is no longer driving (tHZ), or begins driving (tLZ) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. 28. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Following figure shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. These notes are referenced in the "Timing parameters by speed grade" tables for DDR2-400/533/667 and DDR2-800. VOH + x mV VOH + 2x mV tHZ tRPST end point T2 T1 VOL + 2x mV VOL + x mV VTT + 2x mV VTT + x mV tLZ tRPRE begin point VTT - x mV VTT - 2x mV T1 T2 tHZ,tRPST end point = 2*T1-T2 tLZ,tRPRE begin point = 2*T1-T2 24 of 29 Rev. 1.0 March 2007 K4T1G084QD K4T1G164QD DDR2 SDRAM 29. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the VIH(ac) level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL(ac) level to the differential data strobe crosspoint for a falling signal applied to the device under test. 30. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the VIH(dc) level to the differential data strobe crosspoint for a rising signal and VIL(dc) to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS DQS www..com tDS tDH tDS tDH VDDQ VIH(ac) min VIH(dc) min VREF(dc) VIL(dc) max VIL(ac) max VSS < Differential Input waveform timing > 31. Input waveform timing is referenced from the input signal crossing at the VIH(ac) level for a rising signal and VIL(ac) for a falling signal applied to the device under test. 32. Input waveform timing is referenced from the input signal crossing at the VIL(dc) level for a rising signal and VIH(dc) for a falling signal applied to the device under test. CK CK tIS tIH tIS tIH VDDQ VIH(ac) min VIH(dc) min VREF(dc) VIL(dc) max VIL(ac) max VSS 33. tWTR is at lease two clocks (2 * tCK) independent of operation frequency. 34. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(ac) level to the single-ended data strobe crossing VIH/L(dc) at the start of its transition for a rising signal, and from the input signal crossing at the VIL(ac) level to the single-ended data strobe crossing VIH/L(dc) at the start of its transition for a falling signal applied to the device under test. The DQS signal must be monotonic between Vil(dc)max and Vih(dc)min. 35. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(dc) level to the single-ended data strobe crossing VIH/L(ac) at the end of its transition for a rising signal, and from the input signal crossing at the VIL(dc) level to the single-ended data strobe crossing VIH/L(ac) at the end of its transition for a falling signal applied to the device under test. The DQS signal must be monotonic between Vil(dc)max and Vih(dc)min. 36. tCKEmin of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registeration. Thus, after any cKE transition, CKE may not transitioin from its valid level during the time period of tIS + 2*tCK + tIH. 25 of 29 Rev. 1.0 March 2007 |
Price & Availability of K4T1G164QD |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |